A REMARK ON UNCONDITIONAL BASIC SEQUENCES IN L_p (1 < $p < \infty$)

BY G. SCHECHTMAN

ABSTRACT

We prove that every separable \mathcal{L}_p space $(1 with an unconditional basis is isomorphic to a complemented subspace of <math>L_p$ which is spanned by a block basis of the Haar system.

1. Introduction

In [1] the authors ask what are the isomorphic types of complemented closed linear spans of block bases of the Haar system in L_p (= $L_p(0,1)$). In particular, is every \mathcal{L}_p space (1 < p < ∞) with an unconditional basis isomorphic to such a space?

In this paper we show by using essentially known techniques that the answer to this question is affirmative.

2.

PROPOSITION 1. Let $\{x_i\}_{i=1}^{\infty}$ be an unconditional basic sequence in L_p (1 \infty). Then $\{x_i\}_{i=1}^{\infty}$ is equivalent to a block basis of the Haar system.

PROOF. It is a well-known fact that there exists a K > 0 such that for any choice of scalars $\{a_i\}_{i=1}^{\infty}$,

(1)
$$K^{-1} \left\| \sum_{i=1}^{\infty} a_i x_i \right\| \leq \left(\int_0^1 \left(\sum_{i=1}^{\infty} a_i^2 x_i^2(t) \right)^{p/2} dt \right)^{1/p} \leq K \left\| \sum_{i=1}^{\infty} a_i x_i \right\|.$$

(This inequality is proved by integrating against the Rademacher functions.) Thus, if $\{y_i\}_{i=1}^{\infty}$ is another unconditional basic sequence such that $|y_i| \equiv |x_i|$, $i = 1, 2, \dots$, then $\{y_i\}_{i=1}^{\infty}$ is equivalent to $\{x_i\}_{i=1}^{\infty}$. Now let $\{\phi_i\}_{i=1}^{\infty}$ be the Haar system, i.e.,

Received April 1, 1974

^{&#}x27;This is part of the author's Ph.D. thesis written at the Hebrew University of Jerusalem under the supervision of Professor J. Lindenstrauss.

$$\phi_{2^{n}+k} = \chi_{(k2^{-n},(k+1/2)2^{-n})} - \chi_{((k+1/2)2^{-n},(k+1)2^{-n})}$$

for $n = 0, 1, 2, \dots, k = 0, 1, \dots, 2^n - 1$, and $\phi_0 = 1$ (where χ_A denote the characteristic function of A).

By the usual stability theorems we may assume without loss of generality that there exists a strictly increasing sequence of integers $\{m_n\}_{n=1}^{\infty}$ such that

$$x_n = \sum_{k=0}^{2^{m_{n-1}}} a_{2^{m_{n+k}}} \chi_{(k2^{m_{n}},(k+1)2^{m_n})} = \sum_{k=0}^{2^{m_{n-1}}} a_{2^{m_{n+k}}} | \phi_{2^{m_{n+k}}} | \qquad n = 1, 2, \cdots.$$

Put, for $n = 1, 2, \dots$

$$y_n = \sum_{k=0}^{2^{m_{n-1}}} a_{2^{m_{n+k}}} \phi_{2^{m_{n+k}}}.$$

Then, $|y_n| \equiv |x_n|$, $n = 1, 2, \dots$, and thus, as remarked above, $\{y_n\}_{n=1}^{\infty}$ is equivalent to $\{x_n\}_{n=1}^{\infty}$.

COROLLARY 1. Every unconditional basis of L_p (1 < $p < \infty$) is reproducible.

Let us recall first that a basis $\{x_i\}_{i=1}^{\infty}$ in a Banach space X is called *reproducible* if for every embedding of X in a Banach space Y with a basis $\{y_i\}_{i=1}^{\infty}$, $\{x_i\}_{i=1}^{\infty}$ is equivalent to a block basis of $\{y_i\}_{i=1}^{\infty}$.

PROOF OF THE COROLLARY. By [2] the Haar basis is reproducible. The rest is a simple consequence of Proposition 1.

We shall denote by $L_p(l_2)$ the Banach space of all sequences $\{f_1, f_2, \dots\}$ of functions on [0,1] such that:

(2)
$$\|\{f_i\}_{i=1}^{\infty}\|_{L_{p}(I_2)} = \left(\int \left(\sum_{i=1}^{\infty} f_i^2(t)\right)^{p/2} dt\right)^{1/p} < \infty.$$

LEMMA 1. ([3, Vol. II, Lemma 2.10, p. 224]). Let $T: L_p \to L_p$ be a bounded operator. The operator $\tilde{T}: L_p(l_2) \to L_p(l_2)$ defined by

$$\tilde{T}(f_1, f_2, \cdots) = (Tf_1, Tf_2, \cdots)$$

is a bounded operator in $L_p(l_2)$. (In fact $||\tilde{T}|| = ||T||$.)

LEMMA 2. Let $\{x_i\}_{i=1}^{\infty}$ be an unconditional basic sequence in L_p (p > 2). Then there exists a K > 0 such that for all scalars $\{a_{i,j}\}_{i,j=1}^{\infty}$ (with only finitely many $\neq 0$):

(3)
$$K^{-1} \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{i,j}^{2} \right)^{1/2} x_{i} \right\|_{L_{p}}$$

$$\leq \left(\left| \left(\sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} a_{i,j} x_{i}(s) \right)^{2} \right)^{p/2} ds \right|^{1/p} \leq K \left\| \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{i,j}^{2} \right)^{1/2} x_{i} \right\|_{L_{p}}.$$

PROOF. In what follows the sign \approx will denote the existence of inequalities in both directions with constants which do not depend on the scalars $\{a_{i,j}\}_{i,j=1}^{\infty}$. By

 $\{r_i\}_{i=1}^{\infty}$ we shall denote the Rademacher functions, i.e.,

$$r_k(t) = \begin{cases} 1 & \text{if } j/2^k \le t < (j+1)/2^k, j \text{ even} \\ -1 & \text{if } j/2^k \le t < (j+1)/2^k, j \text{ odd.} \end{cases}$$

Notice first that by Khinchine's inequality and (1),

$$\left(\int \left(\sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} a_{i,j} x_{i}(s)\right)^{2}\right)^{p/2} ds\right)^{1/p} \approx \left(\int \int \left|\sum_{j=1}^{\infty} r_{j}(t) \sum_{i=1}^{\infty} a_{i,j} x_{i}(s)\right|^{p} dt ds\right)^{1/p}$$

$$= \left(\int \int \left|\sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} r_{j}(t) a_{i,j}\right) x_{i}(s)\right|^{p} ds dt\right)^{1/p} \approx \left(\int \left(\sum_{j=1}^{\infty} \left(\sum_{i=1}^{\infty} r_{j}(t) a_{i,j}\right)^{2} x_{i}^{2}(s)\right)^{p/2} ds dt\right)^{1/p}.$$

Now, using the fact that $x^{p/2}$ is convex function, the fact that the Rademacher functions form an orthonormal system and again (1) we obtain:

$$\left(\iiint \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} r_{j}(t) a_{i,j} \right)^{2} x_{i}^{2}(s) \Big|^{p/2} dt \, ds \right)^{1/p}$$

$$\geq \left(\iint \left(\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} r_{j}(t) a_{i,j} \right)^{2} x_{i}^{2}(s) dt \right)^{p/2} ds \right)^{1/p}$$

$$= \left(\iint \left(\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{i,j}^{2} \right) x_{i}^{2}(s) \right)^{p/2} ds \right)^{1/p}$$

$$\approx \left(\iint \left[\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{i,j}^{2} \right)^{1/2} x_{i}(s) \Big|^{p} ds \right)^{1/p}$$

which proves the left-hand side of (3). On the other hand:

$$\left(\int \int \left(\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} r_{j}(t) a_{i,j}\right)^{2} x_{i}^{2}(s)\right)^{p/2} dt \, ds\right)^{1/p} \\
= \left(\int \left\|\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} r_{j}(t) a_{i,j}\right)^{2} x_{i}^{2}(s)\right\|_{p/2,t}^{p/2} ds\right)^{1/p} \\
\leq \left(\int \left(\sum_{i=1}^{\infty} \left\|\left(\sum_{j=1}^{\infty} r_{j}(t) a_{i,j}\right)^{2} x_{i}^{2}(s)\right\|_{p/2,t}\right)^{p/2} ds\right)^{1/p} \\
= \left(\int \left(\sum_{i=1}^{\infty} x_{i}^{2}(s)\right) \left\|\sum_{j=1}^{\infty} r_{j}(t) a_{i,j}\right\|_{p,t}^{2} ds\right)^{1/p} ds\right)^{1/p} \\
\approx \left(\int \left(\sum_{i=1}^{\infty} x_{i}^{2}(s)\sum_{j=1}^{\infty} a_{i,j}^{2}\right)^{p/2} ds\right)^{1/p} \approx \left\|\sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_{i,j}^{2}\right)^{1/2} x_{i}\right\|_{L^{\infty}}$$

(We used the triangle inequality, Khinchine's inequality and (1).) This, together with (4) completes the proof.

LEMMA 3. Let $\{x_i\}_{i=1}^{\infty}$, be an unconditional basic sequence in $L_p(1 , and assume that there exists a projection$

$$P: L_p \xrightarrow{\text{onto}} [x_i]_{i=1}^{\infty} ([x_i]_{i=1}^{\infty} = \text{Span}\{x_i\}_{i=1}^{\infty}).$$

For each $1 \le i < \infty$ put $f^i = (0, \dots, x_i, \dots)$ $(x_i \text{ stands in the i's coordinate})$. Then $\{f^i\}_{i=1}^{\infty}$ is equivalent to $\{x_i\}_{i=1}^{\infty}$ and there exists a projection from $L_p(l_2)$ onto $[f^i]_{i=1}^{\infty}$.

PROOF. The fact that $\{f^i\}_{i=1}^{\infty}$ is equivalent to $\{x_i\}_{i=1}^{\infty}$ follows from (1).

Assume now that p > 2. Put $f^{ij} = (0, \dots, x_i, \dots)$, $i, j = 1, 2, \dots$, $(x_i \text{ stands in the } j$'s coordinate).

Note that the operator \tilde{P} , corresponding to P by Lemma 1, is a projection with range $[f^{i,j}]_{i,j=1}$. The sequence $\{f^i\}_{i=1}^{\infty}$ is a subsequence of $\{f^{i,j}\}_{i,j=1}^{\infty}$ ($f^i = f^{i,i}$, $i = 1, 2, \cdots$) which is an unconditional basic sequence by Lemma 2. This completes the proof of the lemma for the case p > 2. For p < 2 let $\{y_i\}_{i=1}^{\infty}$ be the sequence in $L_p^* = L_q$ (1/p + 1/q = 1) defined by:

$$Pf = \sum_{i=1}^{\infty} y_i(f)x_i \qquad f \in L_p.$$

Then

$$P^*g = \sum_{i=1}^{\infty} x_i(g) y_i \qquad g \in L$$

(where P is considered as an operator from L_p to L_p).

Now q > 2 and by the first part of the proof there is a projection from $L_q(l_2)$ onto $[g^i]_{i=1}^{\infty}$ where $g^i = (0, \dots, y_i, \dots)$.

Denote this projection by Q. By inspecting the first part of the proof one can see that

$$Q(g_1, g_2, \cdots) = (P^*g_1|_{[y_1]}, P^*g_2|_{[y_2]}, \cdots)$$

$$= (x_1(g_1)y_1, x_2(g_2)y_2, \cdots) = \sum_{i=1}^{\infty} f^i(\bar{g})g^i$$

where $\bar{g} = (g_1, g_2, \dots) \in L_q(l_2)$. (The dual of $L_q(l_2)$ is $L_p(l_2)$ under the pairing $[(f_1, f_2, \dots)] ((g_1, g_2, \dots)) = \int \sum_{i=1}^{\infty} f_i g_i$).

The conjugate projection Q^* : $L_p(l_2) \to L_p(l_2)$ is given by:

$$Q^*(\bar{f}) = \sum_{i=1}^{\infty} g^i(\bar{f}) f^i, \quad \bar{f} = (f_1, f_2, \cdots) \in L_p(l_2).$$

(Again, Q is considered as an operator from $L_q(l_2)$ to $L_q(l_2)$.) Thus $[f^i]_{i=1}^{\infty}$ is complemented in $L_p(l_2)$. The case p=2 is trivial.

THEOREM 1. Let $\{x_n\}_{n=1}^{\infty}$ be an unconditional basic sequence in $L_p(1 and assume that <math>[x_n]_{n=1}^{\infty}$ is complemented in L_p . Then $\{x_n\}_{n=1}^{\infty}$ is equivalent to a block basis of the Haar system whose closed span is complemented in L_p .

PROOF. As in the proof of Proposition 1 we may assume without loss of generality that there exists a strictly increasing sequence of integers $\{m_n\}_{n=1}^{\infty}$ such that:

$$x_n = \sum_{k=0}^{2^{m_{n-1}}} a_{2^{m_{n+k}}} |\phi_{2^{m_{n+k}}}|.$$

Put $f^i = (0, \dots, x_i, \dots)$, $i = 1, 2, \dots, (x_i \text{ in the } i$'s coordinate) and,

$$h^{2^{m_{n+k}}} = (0, \dots, |\phi_{2^{m_{n+k}}}|, \dots) n = 1, 2, \dots, k = 0, \dots, 2^{m_n} - 1$$

 $(|\phi_{2^{m_{n+k}}}|$ stands in the n's coordinate).

Now, $\{f^i\}_{i=1}^{\infty}$ is equivalent to $\{x_i\}_{i=1}^{\infty}$ and is a block basis of $\{h^{2^{mn+k}}\}$, $n = 1, 2, \dots, k = 0, \dots, 2^{m_n} - 1$. By Lemma 3 there is a projection from $[h^{2^{mn+k}}\}$, $n = 1, 2, \dots, k = 0, \dots, 2^{m_n} - 1$ onto $[f^i]_{i=1}^{\infty}$. $\{h^{2^{mn+k}}\}$, $n = 1, 2, \dots, k = 0, \dots, 2^{m_n} - 1$.

To see this, note that

$$\left\| \sum_{n=1}^{\infty} \sum_{k=0}^{2^{m_{n-1}}} b_{2^{m_{n+k}}} \phi_{2^{m_{n+k}}} \right\| \approx \left\| \sum_{n=1}^{\infty} r_{n}(t) \sum_{k=0}^{2^{m_{n-1}}} b_{2^{m_{n+k}}} \phi_{2^{m_{n+k}}} \right\|$$

with constants which do not depend on t and integrate with respect to t.

Note that the correspondence between $\{h^{2^m n+k}\}$ and $\{\phi_{2^{m_{n+k}}}\}$ takes $\{f^i\}_{i=1}^{\infty}$ onto the $\{y_i\}_{i=1}^{\infty}$ of Proposition 1. Since the Haar basis is unconditional, $[\phi_{2^{m_{n+k}}}]$ is complemented in L_p and therefore $[y_i]_{i=1}^{\infty}$ is also complemented in L_p .

ACKNOWLEDGEMENT

The author wishes to thank Professor Lindenstrauss for his guidance.

REFERENCES

- 1. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_p[0,1]$ (1 , Israel J. Math. 15 (1973), 404-413.
- 2. J. Lindenstrauss and A. Pelczynski, Contribution to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971).
 - 3. A. Zygmund, Trigonometric Series, Cambridge, 1959.

DEPARTMENT OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM

JERUSALEM, ISRAEL